
Anomalous Quartic Gauge Couplings at a Muon Collider

B. Abbott¹, A. Apyan², B. Azartash-Namin¹, V. Balakrishnan¹, J. Berryhill³, S.C. Hsu⁴, S. Jindariani³, M. Kawale¹, E. Khoda⁴, R. Parsons¹, **A. Schuy**⁴, M. Strauss¹, J. Stupak¹, and C. Waits¹

¹University of Oklahoma, ²Brandeis University, ³Fermilab, ⁴University of Washington

Overview

- Prospects for searches of anomalous quartic gauge couplings (aQGCs) at a future muon collider using WW boson pairs produced from vector boson scattering (VBS) and decaying hadronically are reported
 - aQGCs could point in the right direction for new physics models (BSM)
- Considering two channels: $W^+W^-\nu_{\mu}\nu_{\mu}$ and $W^+W^-\mu\mu$ (Fig. 1)
- aQGC searches can be framed generically with dimension-8 effective field **theory** (EFT) operators
- **Muon colliders** have considerable advantages compared to proposed $e^+e^$ and pp colliders

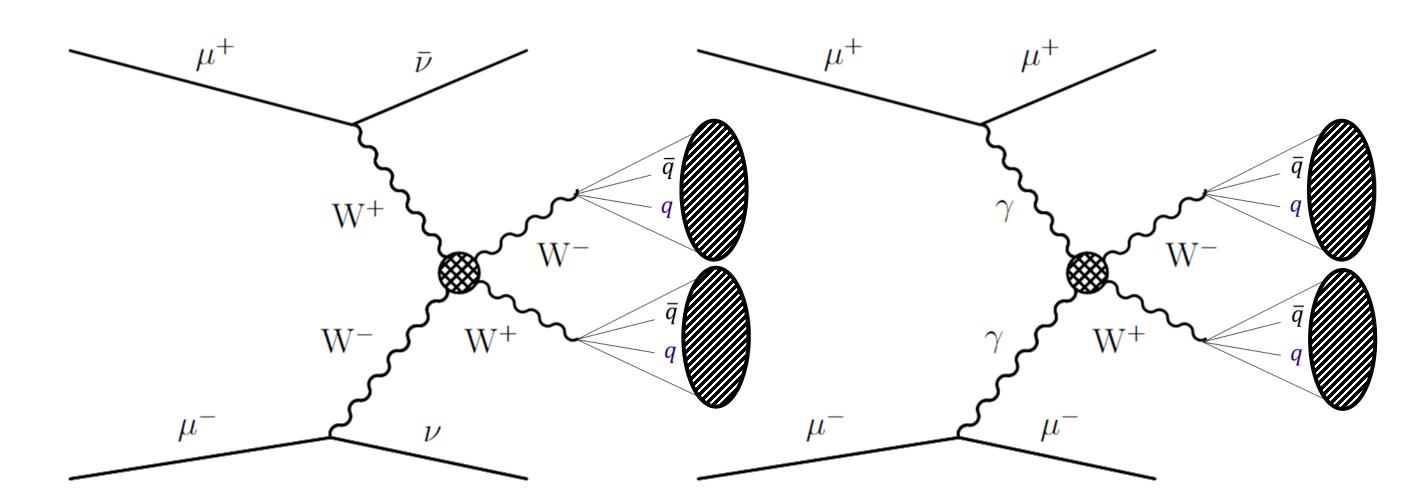
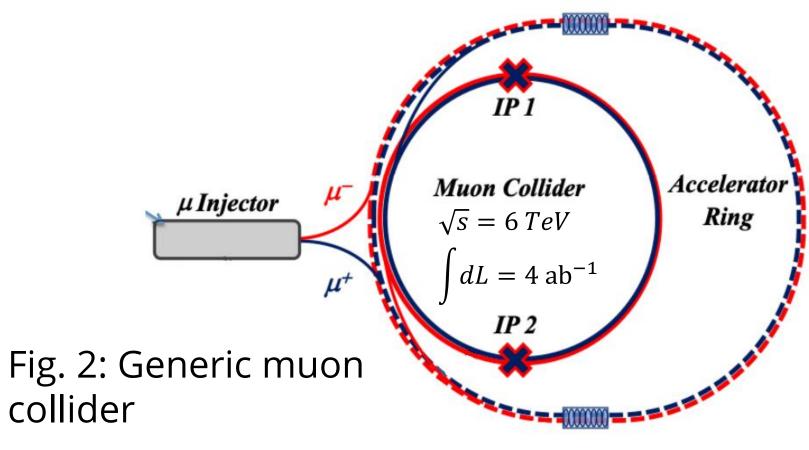



Fig. 1: Representative Feynman diagrams of the $W^+W^-\nu_{\mu}\nu_{\mu}$ (left) and $W^+W^-\mu\mu$ (right) processes. New physics (hatched circle) in the EW sector can modify the QGCs. Each W decays hadronically, resulting in one boosted jet.

Why Muon Collider?

- High energy & luminosity
- Clean environment (but need to consider muon beam decays)
- "Weak boson collider" great opportunity to study VBS processes

aQGC dimension-8 EFT framework

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{f_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{f_i}{\Lambda^4} \mathcal{O}_i^{(8)} + \cdots$$

$$\frac{\text{dim-6}}{\text{dim-8}}$$

- Expands the standard model in powers of the energy scale $1/\Lambda$
- Ten independent dim-8 operators
- Violates tree-level unitarity at sufficiently high energy

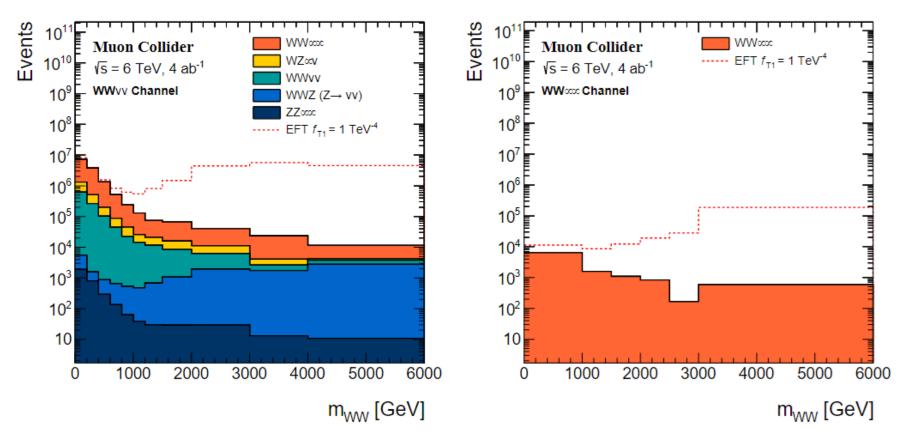


Fig. 3: m_{WW} in the $W^+W^-\nu_{\mu}\nu_{\mu}$ (left) and $W^+W^-\mu\mu$ (right) channels after event selection. The dashed lines show the signal predictions for one illustrative aQGC parameter. The overflow is included in the last bin.

Event Simulation

$$\left|A_{SM} + \sum_{i} c_{i}A_{i}\right|^{2} = |A_{SM}|^{2} + \sum_{i} c_{i}2Re(A_{SM}^{*}A_{i}) + \sum_{i} c_{i}^{2}|A_{i}|^{2} + \cdots$$

$$SM \qquad \text{interference} \qquad \text{quadratic}$$

- SM, interference, and quadratic EFT contributions to the signal process – MadGraph5
- Background processes ($WZ\mu\nu$, $ZZ\mu\mu m$, $WW\mu\mu$, and WWZ) – Whizard 3
- Parton showering and hadronization Pythia 8.306
- **Detector effects** Delphes 3.5
- Beam induced backgrounds not considered

Event Selection

- Targeting hadronically decaying WW pairs with large invariant mass
- Two channels:
- $W^+W^-\nu_\mu\nu_\mu$
 - 0 leptons, large $M_{missing}$, two jets
- $W^+W^-\mu\mu$
 - 2 muons, low $E_{missing}$, two jets

Statistical Analysis

- Fit f_i/Λ^4 using distribution of invariant mass of WW pair m_{WW} (Fig. 3)
- $W^+W^-\nu_{\mu}\nu_{\mu}$ and $W^+W^-\mu\mu$ considered separately
- Each EFT operator is **fit separately** – all other aQGC parameters are set to 0
- No systematic uncertainties are considered

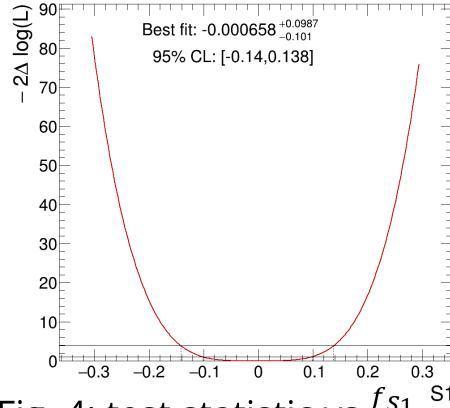


Fig. 4: test statistic vs $\frac{f_{S1}}{\Lambda^4}$ fit on m_{WW}

 $WW\nu\nu$ Limits (TeV⁻⁴)

[-0.032, 0.035]

[-0.088, 0.065]

 $WW\mu\mu$ Limits (TeV⁻⁴) $f_{\mathrm{M},7}/\Lambda^4$ [-0.12, 0.17]

 $f_{\mathrm{S},0}/\Lambda^4$ [-0.22, 0.20]

 $f_{\rm T,0}/\Lambda^4$ [-0.04, 0.028]

 $f_{\mathrm{S},1}/\Lambda^4$ [-0.14, 0.14] $f_{\rm T,1}/\Lambda^4 \ [-0.025, 0.0095]$

 $f_{\rm T,0}/\Lambda^4 \ [-0.0062, 0.0030] \ f_{\rm T,2}/\Lambda^4 \ [-0.12, 0.068]$

 $f_{\rm T,1}/\Lambda^4 \ [-0.0082, 0.0031] \ f_{\rm T,6}/\Lambda^4 \ [-0.034, 0.033]$

 $f_{\rm T,2}/\Lambda^4$ [-0.0096, 0.0046] $f_{\rm T,7}/\Lambda^4$ [-0.043, 0.038]

Fig 3: expected 95% confidence level lower and upper limits on the aQGC parameters f/Λ^4 , where f is the Wilson coefficient of the given operator and Λ is the energy scale of new physics.

Future Work

- Unitarity consideration
- Beam induced backgrounds
- Complete BSM model
- Higher center-of-mass energies ($\sqrt{s} =$ 10, 30 TeV)

References

arXiv:1607.03030

B. Abbott et. al. Anomalous quartic gauge couplings at a muon collider. arxXv:2203.08135

A. Costantini, et al. Vector

boson fusion at multi-TeV muon colliders. JHEP 09 080, arXiv:2005.10289

E. d. S. Almeida, et al. Unitarity constraints on anomalous quartic couplings. Phys. Rev. D 101. 113003 (2020),

arXiv:2004.05174 C. Fleper, et al. Scattering of W and Z Bosons at High-Energy Lepton Colliders. Eur. Phys. J. C 77, 120 (2017),

D. Schulte The International Muon Collider Collaboration. JACoW IPAC 3792-3795 (2021)